Structure theory for multiplicatively semiprime algebras

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Derivations in semiprime rings and Banach algebras

Let $R$ be a 2-torsion free semiprime ring with extended centroid $C$, $U$ the Utumi quotient ring of $R$ and $m,n>0$ are fixed integers. We show that if $R$ admits derivation $d$ such that $b[[d(x), x]_n,[y,d(y)]_m]=0$ for all $x,yin R$ where $0neq bin R$, then there exists a central idempotent element $e$ of $U$ such that $eU$ is commutative ring and $d$ induce a zero derivation on $(1-e)U$. ...

متن کامل

Galois algebras I: Structure Theory

We introduce a concept and develop a theory of Galois subalgebras in skew semigroup rings. Proposed approach has a strong impact on the representation theory, first of all the theory of Harish-Chandra modules, of many infinite dimensional algebras including the Generalized Weyl algebras, the universal enveloping algebras of reductive Lie algebras, their quantizations, Yangians etc. In particula...

متن کامل

Multiplicatively closed Markov models must form Lie algebras

In this note we prove a result which makes explicit the requirement that amultiplicatively-closed Markov model must form a Lie algebra (definitions will be provided). We consider continuous-time Markov chains and work under the general assumption that a model is determined by specifying a subset of rate matrices (or rate generators). These models are used in a wide array of scientific modelling...

متن کامل

Structure Theory of Semisimple Lie Algebras II

3. The restriction K|gα×g−α , i.e. K(a, b) with a ∈ gα and b ∈ g−α, is non-degenerate, so it induces a pairing between gα and g−α. In particular, we have dim gα = dim g−α. 4. The restriction K|h×h is non-degenerate, hence we have an isomorphism ν : h → h∗ given by ν(h)(h′) = K(h, h′) for all h, h′ ∈ h. The map ν induces a bilinear form on h∗ by K(α, β) = β ( ν−1(α) ) = α ( ν−1(β) ) for all α, β...

متن کامل

Structure Theory of Finite Conformal Algebras

After the seminal paper [BPZ] of Belavin, Polyakov and Zamolodchikov, conformal field theory has become by now a large field with many remarkable ramifications to other fields of mathematics and physics. A rigorous mathematical definition of the “chiral part” of a conformal field theory, called a vertex (= chiral) algebra, was proposed by Borcherds [Bo] more than ten years ago and continued in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2004

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2004.07.035